Section 15.4

Integration in Polar, Cylindrical, and Spherical Coordinates

Double Integrals in Polar Coordinates
Example
Re-scaling the Area Elements
Triple Integrals in Cylindrical and Spherical Coordinates Formulas
Example, Cylindrical
Example, Simple and Non-Simple Regions in Picture
Examples, Spherical
Cylindrical Coordinates

Spherical Coordinates

Double Integrals in Polar Coordinates

Recall the change-of-variables formula for double integrals: if $G(u, v)=(x(u, v), y(u, v))$ is a transformation with $G(S)=R$, then

$$
\iint_{R} f(x, y) d A_{x y}=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A_{u v}
$$

The transformation from polar to rectangular coordinates is $G(r, \theta)=(x, y)=(r \cos (\theta), r \sin (\theta))$, with Jacobian $\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right|=r$.

Double Integral Formula in Polar Coordinates

$$
\iint_{R} f(x, y) d A_{x y}=\iint_{S} f(r \cos (\theta), r \sin (\theta)) r d A_{r \theta}
$$

where the region R is described in rectangular coordinates x, y on the left side, and in polar coordinates r, θ on the right side.

1 Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates

The double integral formula in polar coordinates is

$$
\iint_{R} f(x, y) d x d y=\iint_{S} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

or more simply

$$
\iint_{R} f d x d y=\iint_{S} f r d r d \theta
$$

or even more simply

$$
d A=d x d y=r d r d \theta
$$

The object $d A$ is sometimes called the area element. This is useful for regions that are easier to describe in polar coordinates.

Example 1: Let D be the disk of radius 1 centered at $(0,0)$. Evaluate

$$
\iint_{D} e^{x^{2}+y^{2}} d A
$$

Solution: In polar coordinates,

$$
D=\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta<2 \pi\} .
$$

Since $r^{2}=x^{2}+y^{2}$,

$$
\begin{aligned}
\iint_{D} e^{x^{2}+y^{2}} d A & =\int_{0}^{2 \pi} \int_{0}^{1} e^{r^{2}} r d r d \theta=\int_{0}^{2 \pi}\left[\frac{e^{r^{2}}}{2}\right]_{0}^{1} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2}(e-1) d \theta=\pi(e-1)
\end{aligned}
$$

Polar Rectangles

In general, a region described in polar coordinates by

$$
R=\{(r, \theta): a \leq r \leq b, p \leq \theta \leq q\}
$$

is called a polar rectangle. It corresponds to a section of an annulus:

(Recall that the measure of an angle in radians is $\frac{\text { arc length }}{\text { radius }}$.)

2 Triple Integrals in Cylindrical and Spherical Coordinates Formulas

Triple Integrals in Cylindrical and Spherical Coordinates

Remember the change-of-variables formula for triple integrals:
Let $G(u, v, w)=(x, y, z)$ be a transformation with $G(S)=R$. Then

$$
\iiint_{R} f(x, y, z) d V_{x y z}=\iiint \int_{S} f(G(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d V_{u v w} .
$$

Transformations from cylindrical or spherical to rectangular coordinates:

$$
\begin{aligned}
& G(r, \theta, z)=(r \cos (\theta), r \sin (\theta), z) \\
& H(\rho, \phi, \theta)=(\rho \sin (\phi) \cos (\theta), \rho \sin (\phi) \sin (\theta), \rho \cos (\phi)) \\
& \text { (cylindrical) } \\
& \text { (spherical) } \\
& \operatorname{Jac}(G)=\frac{\partial(x, y, z)}{\partial(r, \theta, z)}=\left|\begin{array}{ccc}
\cos (\theta) & -r \sin (\theta) & 0 \\
\sin (\theta) & r \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right|=r \\
& \operatorname{Jac}(H)=\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)}=\left|\begin{array}{ccc}
\sin (\phi) \cos (\theta) & \rho \cos (\phi) \cos (\theta) & -\rho \sin (\phi) \sin (\theta) \\
\sin (\phi) \sin (\theta) & \rho \cos (\phi) \sin (\theta) & \rho \sin (\phi) \cos (\theta) \\
\cos (\phi) & -\rho \sin (\phi) & 0
\end{array}\right|=\rho^{2} \sin (\phi)
\end{aligned}
$$

Triple Integrals in Cylindrical Coordinates

$$
\iiint_{R} f(x, y, z) d x d y d z=\iiint_{G^{-\mathbf{1}}(R)} f(G(r, \theta, z)) \square d r d \theta d z
$$

Triple Integrals in Spherical Coordinates

$$
\iiint_{R} f(x, y, z) d x d y d z=\iiint_{H^{-1}(R)} f(H(\rho, \phi, \theta)) \rho^{2} \sin (\phi) d \rho d \phi d \theta
$$

where $G(r, \theta, z)=(x, y, z)$ and $H(\rho, \phi, \theta)=(x, y, z)$.
Or, for short:

Volume Element in \mathbb{R}^{3}

$$
d V=d x d y d z=r d r d \theta d z=\rho^{2} \sin (\phi) d \rho d \phi d \theta \text {. }
$$

Cylindrical Triple Integrals: Example

Example 2: Integrate $f(x, y, z)=x^{2}+y^{2}$ over the solid S contained inside the cylinder $x^{2}+y^{2}=1$, under the plane $z=4$, and above the elliptic paraboloid $z=1-x^{2}-y^{2}$.

Solution: In cylindrical coordinates, the solid S has bounds $0 \leq \theta \leq 2 \pi, \quad 0 \leq r \leq 1,1-r^{2} \leq z \leq 4$.

$$
\begin{aligned}
\iiint_{S}\left(x^{2}+y^{2}\right) d V & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{1-r^{2}}^{4} r^{3} d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} 3 r^{3}+r^{5} d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{3 r^{4}}{4}+\frac{r^{6}}{6}\right]_{0}^{1} d \theta=\int_{0}^{2 \pi} \frac{11}{12} d \theta=\frac{11 \pi}{6}
\end{aligned}
$$

Cylindrical Integrals: Example 2 Continued

The cylindrical integral set-up in order $d z d r d \theta$ can be described similar to the shell method.

The cylindrical integral set-up in order $d r d z d \theta$, can be described similar to the washer method.

Spherical Triple Integrals: Example

Example 3: Set up (but do not evaluate) the integral $\iiint_{W} y d v$, where W is the "orange slice" bounded by the unit ball and the planes $y=0$ and $y=x$, as shown.

Solution: In spherical coordinates,

$$
W=\{(\rho, \phi, \theta) \mid 0 \leq \rho \leq 1,0 \leq \phi \leq \pi, 0 \leq \theta \leq \pi / 4\}
$$

SO

$$
\iiint_{W} y d v=\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\pi / 4} \underbrace{\rho \sin \phi \sin \theta}_{y} \underbrace{\rho^{2} \sin (\phi) d \theta d \phi d \rho}_{d V}
$$

Spherical Triple Integrals: Example

Example 4: Find the volume of the solid contained above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$.

Solution: In spherical coordinates, the solid has bounds $0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \frac{\pi}{4}$, and $0 \leq \rho \leq \cos (\phi)$.
(For the bound on ρ, write $x^{2}+y^{2}+z^{2}=z$ in spherical coordinates as $\rho^{2}=\rho \cos (\phi)$.)

$$
\begin{aligned}
\iiint_{S} 1 d V & =\int_{0}^{\frac{\pi}{4}} \int_{0}^{\cos (\phi)} \int_{0}^{2 \pi} \rho^{2} \sin (\phi) d \theta d \rho d \phi \\
& =\frac{2 \pi}{3} \underbrace{\int_{0}^{\frac{\pi}{4}} \sin (\phi) \cos ^{3}(\phi) d \phi}_{u=\cos (\phi), d u=-\sin (\phi) d \phi}=\frac{2 \pi}{3} \int_{1}^{\frac{\sqrt{2}}{2}}-u^{3} d u=\frac{\pi}{8}
\end{aligned}
$$

